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NUMERICAL METHODS FOR THE GENERALIZED
HOPF BIFURCATION*

W. GOVAERTSt, YU. A. KUZNETSOV, AND B. SIJNAVE~

Abstract. The presence of a generalized Hopf (GH) point (Hopf point where the first Lyapunov
coefficient vanishes) deeply infiuences the qualitative behavior of a dynamical system. Further in
formation on this behavior can be obtained from the second Lyapunov coefficient which depends
on derivatives of order up to five. We describe two computational procedures, implemented in the
software package CONTENT, to compute and numerically continue GH points. This is applied to a
biochemical model and two examples from neurobiology. We make some comparisons between the
two methods for computing GH points and discuss briefly the merits of three methods for computing
curves of Hopf points.
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1. Introduction. We consider a dynamical system depending on pararueters,

(1.1) >lt=F(u,o.~), F:W~xRm—~’,

and the numerical study of its bifurcations from the solutions to the equilibrium
equations

(1.2) F(u, c~) = 0

associated with (1.1). The aim of this study is to obtain geometric information on
the periodic solutions of (1.1) and their bifurcations. In the case of generalized Hopf
(GB) points this information depends on the derivatives of order up to five.

We first recail some basic analytic facts from dynamical systems theory, referring
to [11] and [18] for details.

Typically bifurcation points are characterized by the coefficients of the Taylor
expansion of F. Let A be the Jacobian matrix of F, and B, C, D, E the tensors of
second, third, fourth, and fifth order derivatives respectively. For example, for vectors
p, q, r e W’~, C(p, q, r) is in R’~ with components

O3F~(u,ci~)(1.3) C~(p,q,r) = pq~r~
j,k,l=1 ~ k 1

for i = 1, 2,... , n . It is convenient to consider A, B,. .. , E as objects in the spaces
Mn,T~,...,T,~ofnxnmatrices,r~x(nxn),...,nx(nxnxnxnxn)tensors
respectively.
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The two codimension-1 bifurcations of (1.2) (fold and Hopf) are determined by
equations in M~ to which A is a regular solution in the bifurcation point and by
inequality conditions in M~ x x 2~. Among the five codimension-2 bifurcations
three (namely, Bogdanov—Takens, zero-Hopf, and double Hopf) are also determined
by equations in M~ to which A is a regular solution in the bifurcation point. However,
the inequality conditions involve higher order derivatives (up to order 5). The two
remaining codimension-2 bifurcations are cusp (CP) and Gil points. The latter are
also called Bautin points. Another name is “degenerate Hopf,” but this term is often
given a wider meaning; cf. [15], [27].

CP points are determined by equations in M~ x 2~ to which (A, B) is a regular
solution in the bifurcation point and by inequality conditions in M~ x x ~ Gil
points are determined by equations in M~ x x 2~ to which (A, B, C) is a regular
solution in the bifurcation point and by inequality conditions in M~ x 2~... x ~

For each bifurcation type there may be several ways to compute points exhibiting
the bifurcation. Each method is based on a set of defining equations. The unlcnowns
of these equations always inciude the equilibrium coordinates and free parameters but
may also include other variables. For example, for Hopf points they might include the
imaginary part of the Hopf eigenvalue and, maybe, the eigenvectors. Apart from this,
the defining equations often use other variables which are fixed during the computation
but may depend on the particular region in the space of the variables of the scheme.
These we call auxiliary data; their choice is typically based on local information.

To obtain a regular system the nurnber of free variables must be at least the
codimension of the object. Ideally, the computational scheme leads to a full rank
system in the variables of the scheme and the dimension of the kernel of its Jacobian
is equal to the number of free parameters minus the codimension of the object.

The interaction between mathematical properties of the problem and numerical
properties of the systems of defining equations has been studied well in the cases where
the defining conditions involve only A. This fits in the framework of unfoldings of
matrices. On the other hand, if zero is the only eigenvalue on the imaginary axis and it
is semisimple, but there are degeneracies in the nonlinear terms, then the bifurcation
is usually called a singularity. This case has also been studied extensively; cf. [21],
[22], [23], [25], [10], [17]. The CP singularity is of this type.

In this paper we concentrate on the remaining case, namely Gil. The problem
naturally arose in our work on the software package CONTENT [19] which now allows
us to compute and continue numerically all codimension-2 biMcations of equilibria
of dynamical systems.

GH points are computed and continued numerically in [15] and [27] in the context
of the generalized Lyapunov—Schmidt reduction of Hopf bifurcation problems with a
distinguished bifurcation parameter. This is a powerful approach; in principle it allows
us to compute the Lyapunov coefficients of all orders. On the other hand, it does not
carry over in a straightforward way to other bifurcation problems. Our approach is
simpler in the sense that we have no distinguished bifurcation parameter. Moreover,
it is based on the center manifold reduction which provides more information on the
dynamics of (1.1) than the Lyapunov—Schmidt one. Also, it flts better in a general
framework for bifurcation problems; see [20].

The first software package that allowed us to continue GH points numerically
was LOCBIF [16]. In this package the first Lyapunov coefficient is obtained by an
intermediate computation of the center manifold siniilar to that described in [13].
We use a formula that involves only the original state space. Also, we avoid scaling

problems by using a bordered matrix approach for the bialternate matrbc product
of the Jacobian matrix of the system instead of the Hurwitz matrix (the entries of
the Hurwitz matrix are coefficients of the characteristic polynomial of the Jacobian
matrix).

In section 2 we review the analytical results on the GH bifurcation that are rele—
vant to the numerical methods. The numerical methods themselves are presented in
section 3. In section 4 we present examples of dynamical systems where the presence
of Gil points is particularly important for the understanding of the global behavior of
the systems. The first is a recent biochemical model for the peroxidase—oxidase reac
tion, the second is the classical model of Hodgkin and Huxley for the electrochemical
activity of the giant axon of the squid, and the third is a recent, very complicated
model for the LP-neuron of the crab. In section 5 we discuss our experience with
several numerical methods and indicate some possibilities for further development.

2. Analytical background. A Hopf point (uo, ao) is characterized by the fact
that A(uo, ao) has one conjugate pak of pure imaginary eigenvalues ±iwo, ~o > 0 and
no other eigenvalues on the imaginary axis.

The first Lyapunov coefficient 4 is defined by

(2.1) £~ = ~Re (p,C(q,q,ij) —2B(q,A1B(q,ij)) +B(ij,(2iW0I~ —A)’B(q,q)));

see [18]. Here the complex vectors p, q e C~’ satisfy

(2.2) Aq = iwoq, ATp —iwop, (p,q) = 1,

where ~, q) = q is the standard scalar product in C~ . The vector q may be
determined uniquely, for example, by requiring (q°, q) = 1 for some fixed vector q°
not orthogonal to q. This normalization does not influence the sign of 4. We note
that ~, p, q are defined only in Hopf points, i.e., for matrices which have a unique
conjugate pak of pure imaginary eigenvalues.

The first Lyapunov coefficient 4 largely determines the dynamic behavior of (1.1)
in the neighborhood of a Hopf point. We recall that at a Hopf point the state space
contains a center manifold, i.e., a two—dimensional manifold which is tangential to the
eigenspace of A for the eigenvalues ±i~0 and is invariant under the flow generated
by (1.1). Moreover, this manifold can be smoothly continued to nearby parameter
values.

In a neighborhood of a Hopf point with £~ ~ 0 the dynamic behavior of the system
(1.1), reduced to the parameter-dependent center manifold, is orbitally topologically
equivalent to that of the complex variable w subject to

(2.3) (‘q+iw)w+%w~wj2

with ,~, w, 4 are smooth continuations of 0, w0 and the first Lyapunov coefficient at
the Hopf point.

Formula (2.3) is called the perturbed normal form; in the Hopf point itself it is
the critical normal forrn. See [11] or [18] for details. 1f 4 <0 then a family of stable
periodic orbits can be found on this family of manifolds, reducing to a fixed point in
the Hopf point. This farnily of orbits can be parameterized by its amplitude which
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becomes zero in the Hopf point. It 4 > 0 then a similar result hoids with unstable
periodic orbits.

A GH point is a Hopf point where 4 vanishes. A critical normal form at the
Bautin bifurcation is given in [18]:

(2.4) 7h = iwow + £2w1w14 + 0(w6),

where the second Lyapunov coefficient £2 is real. More precisely, there is a smooth
invertible local coordinate transformation combined with a time reparametrization
reducing the restriction of (1.1) to the center manifold at the Bautin bifurcation point
to the form (2.4). 1f £2 ~ 0 then the reduced system on the parameter-dependent
center manifold is orbitally topologically equivalent to

(2.5) 7h (ij + iw0)w + /3wIwI2 + £2wIwj4

with two unfolding parameters 77, ~3.
Formulae for the computation of £2 in terms of A, B, C, D, E, ahd q, p are provided

in [20]. They are relatively short but can best be handled by symbolic software.
The above two-parameter normal form for a GH bifurcation point is well known;

for descriptions and further references see [11, section 7.1] and [18, section 8.3.2]. We
recail that a Hopf curve passes through the GH point with 4 changing sign at the
GH point. On the side with £~ < 0 stable periodic orbits are bom in the direction
where the real part i~ of the critical eigenvalues is positive. On the side with 4 > 0
unstable periodic orbits are bom in the direction where ~ becomes negative. Further
details of the bifurcation diagram depend on the sign of £2.

The case with £2 <0 is represented in Figure 2.1. There are stable equiibria in
the regions where ij < 0 and unstable equilibria where î~ > 0. The stable periodic
orbits continue to live on the side where /3 > 0 and ~ < 0. So there is a region
in parameter space where a stable periodlic orbit, an unstable periodic orbit, and a
stable equilibrium exist together. There is also a boundary curve in parameter space,

(T in Figure 2.1), along which the stable and unstable periodic orbits coalesce and
disappear, i.e., where a turning point bifurcation of periodic orbits occurs.

1f £2 > 0 then a similar (or rather dual) phenomenon occurs in the part where
13 < 0 and ~ > 0; there is a region where an unstable equilibrium exists inside a stable
periodic orbit inside an unstable periodic orbit (the word “inside” refers to the center
manifold). Again there is a boundary curve in parameter space where the stable and
unstable periodic orbits coalesce and disappear. See Figure 2.2.

2.1. The manifold. We say that a triplet (A, B, C) e M~ x x 2~ is a GH
triplet if A has a pak of simple eigenvalues ±iwo, wo > 0, no other zero-sum pak of
eigenvalues, and 4 = 0 where 4 is defined by (2.1) and (2.2). The following result
holds.

PRoPosITIoN 1. The set of GH-triplets is a smooth submanifold ofM~ x x
with codimension 2.

Proof. It is convenient to use the notion of a bialternate product matrix. For
details of this matrix construction we refer to [12]; we recail that if A E 1R’~ then
2A ® 1,-, e JRb(n)xb(n) where b(n) = n(n — 1)/2. Furthermore, 2A 0 I,~ is singular
if and only if A has a pak of eigenvalues with sum zero. Let (A0, B0, C0) be a
GH-triplet. Let qo = qoi + iqo2 be a right eigenvector of A0 for the eigenvalue iWO.

Since iw0 is algebraically simple there exist smooth functions 77(A) + iW(A) ~

q(A) = q1(A) + iq2(A) ~ C~, p(A) = p1(A) + ip2(A) ~ C~, such that 77(A0)
0,W(Ao) =wo,q(Ao) =qo and

(2.6) Aq(A) (77(A) +iw(A))q(A), ATp(A)

= (77(A) — iW(A))p(A), ~p(A),q(A))

T

13
H÷

0

®, H~,o

H~

FIG. 2.1. Stable and unstable equilibria and periodic orbits near a GH point with £2 <0.

‘1

II..

T

FIG. 2.2. Stable and unstable equilibria and periodic orbits near a GH point with £2 > 0.

= 1, (q°,q(A)) 1.
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Now in a neighborhood U of (A0, B1~, Go) the GH-triplets (A, B, C) are charac
terized by the two equations

27 det(2A®I~) = 0,£~(A,B,C) = 0,

where

(2.8)

ae~
= Re(p~qJqk~1).

OC(i,j, k, 1)

2.2. Regularity and transversality. Assume m ≥ 2 and that at (uo, c~o) the
full Jacobian

OF
ü(u,a)

of (1.2) has full rank n so that (1.2) locally near (u0, ao) represents an m-dimensional
manifold. This assumption will be called the manifold condition. Let T be a full rank
(n + m) x m-matrix whose colurnns span the kernel of (2.9). We note that T spans the
tangent space to the equilibrium manifold and ~f’~ )T spans the space orthogonal
to the equiibriurn manifold.

Let gi (A, B, G), g2(A, B, C) be any two functions that locally define the GH man
ifold regularly. We say that the transversality condition holds if the system

has full rank. Equivalently,

F(u,a) = 0,
gi(A(u,Q),B(u,cx),C(u,a)) = 0,
g2(A(u,a),B(u,o~),C(u,a)) = 0

O(gl,g2) O(A,B,G)
T

O(A,B,C) O(u,a)

has full rank. Also equivalently, the kernels of and intersect in a space
with the minimal dimension m — 2.

Obviously the transversality condition is independent of the choice of the two
functions gi, g~, and of the choice of a particular method to compute GH points. On
the other hand, a good computational method should lead to a regular defining system
if the transversality condition holds.

3. Two numerical methods for generalized Hopf. We discuss the two sets
of defining equations for GH points whose implementation in CONTENT was announced
in[7j.

3.1. Minimally extended system. This method uses only the minimal num
ber n + 2 of defining equations (the number of state variables plus the codimension
of the bifurcation). The auxiliary data are vectors v1&, V2b, ‘wlb, ‘W2b E 1R~ and scalars
d12, d21 so that the matrix

2AØI~
T

T
V2b

is nonsingular.
The defining equations for CH points are

( F(u,a) = 0,
detG

G=(9h1 g12
\~ g21 Y22

(2.9)

e~(A, B, C) = Re (p, C(q, q,~) — 2B(q, A’B(q,ij))’+ B(ij, (2i~iI~ — A)—1 B(q, q))),

(w, p, q being functions of A). We stress that (2.8) is based on a continuation of the
definition of the first Lyapunov coefficient for matrices near a Hopf matrix. In the
Hopf point we have £~ = 2~i but in other points £~ is not necessarily related to the
parameter-dependent cubic normal form coefficient.

In (2.7) all entries of A, B, G are independent variables; let us denote them for
simplicity by the formal symbols A(i,j), B(i,j, k), C(i,j, k, t), respectively.

We first prove that there exists an i e {1,... , n} such that (det(2AGIfl))A(~,~) ~ 0.
Suppose that this is not the case. It is known (see, e.g., [12] or [8]) that det(2A®I~) is
the product of all sums of pairs of eigenvalues of A. Since there is only one pair with
sum zero, namely the Hopf pair, it follows that (~(A))A(~~) = 0 for all i e {1,... , n}.

Next, by standard arguments we have.

(~(A) + iw(A))~ = ________

where z denotes any entry of A. In particular, for z = A(i, i) we have 0 = (r1(A))A(~,~) =

l~?(p(A)~q(A)~) for all i e {1, . . . , n}. This contradicts the assumption that ~p(A), q(A))
= 1.

Obviously (det(2AØIfl))B(~,~,k) = 0 and (det(2AØI~))c(~,~,k,l) = 0 for all i,j, k, t e
{1,. . . ,n}.

Next we note that

(2.10)

(2.11)

Choosing k = t so that q,~ ~ 0 we find

ae*
OC(i,j,k,k) = IqkI2(p~1q~1 —pi2qj2).

Since q cannot be a real vector we can choose a j such that qj2 ~ 0. Then

OC(i,j,k,k) = IqkI2q~2(p~1(qJ1/qJ2) —Pi2).

Since the real and imaginary components of p cannot be proportional, it follows that
there exists an i with ac(~1kk) ~ 0. Hence

O(g, £~)
O(A,B,C)

(3.1) ( Wlb W2b

0 d12
d21 0

(3.2)

where the matrix

has full rank 2 at (A,B,G) = (Ao,Bo,C0). D (3.3)
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is obtained by solving the system

(3.4) Mb ( ~ ) = ( O~)

We note that in (3.1) a doubly bordered extension of 2A 01,-t is used. Indeed, on
curves of GH points double Hopf points (two pairs of pure imaginary eigenvalues) and
Hopf.-neutral saddie points (Hopf pair and zero-sum pair of real eigenvalues) can be
expected generically; in such points 2A 0I~ has rank defect two and a singly bordered
extension is necessarily singular, causing a breakdown in the defining system for GH.
With two borders (wisely adapted during the continuation procedure) this can be
avoided.

In (3.2) £~ is defined by (2.8). The scalar w e C and vectors p, q E are
obtained by linear operations based on the solution of linear systems with (3.1) and
its transpose as in [6].

PROPOSITION 2. Suppose that the manifold condition is satisfied at (uo, ao).
Then the system in (3.2) kas maximal rank if and only if the transversality condition
is satisfied.

Proof. The numerical method is close to the proof of Proposition 1, as is best
seen from the similarity of (2.7) and (3.2) which both contain the condition £~ — 0.
To relate the function det(2A0I~) in (2.7)to the function detG in (3.2) we note that
by (3.4)

det(2A0 1fl) = (detMb)(detG).

Since det Mb is nonzero, it follows that det(2A 0 I~) vanishes if and only if det G
vanishes. Talcing derivatives with respect to any variable z and evaluating at a Hopf
point (det(2A 01fl) = det G = 0) we flnd that

(det(2A0I,,j)~ = (detM&)(detG)7.

Since det Mb is nonzero, it follows that det(2A 0 Ifl)Z vanishes ifand only if (det G)7
vanishes. Hence the two functions det(G) and £~ form a regular defining system for
the GH-manifold. fl

3.2. Maximally extended system. The minimally extehded system for GH
points is mathematically straightforward and can be implement~d fairly easily. How
ever, implementation of symbolic or automatic differentiation of £~ is hard. Therefore
we present another method for generalized Hopf that can use symbolic derivatives.
The price paid for that is the size of the system. The number of variables of the
scheme is 8n + 5.

The idea is to express explicitly that A = F~(u, a) has an imaginary eigenvalue
iw with right eigenvector q e C’~ and left eigenvector p e C~ and to add the condition
that the first Lyapunov value vanishes. To fix the right and left eigenvectors we add
the normalization conditions (qo, q) = (p, q) = 1, where q~ e C~ is the normalized
right eigenvector q at a previously computed point on the curve. To simplify formally
the expression for £~, we introduce v ~ 1~, w E as additional unlcnowns, where

v=A1B(q,~), w=(2iwI~—A)1B(q,q).

Thus the variables of the scheme consist of the components of

(u, c~, q, w,p, )~., v, w).

The components of the vector q~ are auxiliary data.
The deflning equations for GH are given by the complex system

F(u, a) = 0,
Aq—iwq = 0,
ATp+.~\p = 0,

(35\ (qo,q)—1 = 0,
(p,q)—1 0,

Av—B(q,~) = 0,
(2iwI~—A)w—B(q,q) = 0,

Re ~p, C(q, q, ij) — 2B(q, v) + B(~, w)) = 0.

The complex variable )~ is introduced artfficially to regularize the system; formally,
along the GH curve, )~. iw.

In the real form we decompose q = qi+iq2, p pi+ip2, ~ = )~1+i)~.2, w = w1+iw2.
Also the second, third, fourth, flfth, and seventh equations in (3.5) are decomposed
into separate equations for the real and imaginary parts. In this way we obtain a real
system of 8n + 5 equations with 8n + 6 variables.

PROPOSITI0N 3. Suppose that the manifold condition is satisfied at (uo, ao).
Then the real for,n of the system in (3.5) has maxiinal rank if and only if the transver
sality condition is satisfied.

Proof. In the real form the variables of the defining system for GH are

(u, o~, qi, q2,w,p1,p2, )‘1, ~ v, w1, w2)

and the corresponding Jacobian Jma,, has the form

A ~ 0 0 0 0 0 0 0 0 0 0
Bq1 F,q1 A ~ q~ 0 0 0 0 0 0 0
Bq2 F~rnq2 —~I, A —qj 0 0 0 0 0 0 0

(ATpi)~ (ATpi)~ 0 0 0 f4,6 ~ Pl —P2 0 0 0

(ATp2),~ (ATp2)~ 0 0 0 ~‘2~ .157 P2 Pi 0 0 0

o 0 q~ q~ 0 0 0 0 0 0 0 0

o 0 —q~ q~’1 0 0 0 0 0 0 0 0

o 0 p~’ P~’ 0 q~’ q~’ 0 0 0 0 0

0 0 —P~ p~’ 0 q~ —q~’ 0 0 0 0 0

~1O,l fl0,2 —2Bq1 —2Bq2 0 0 0 0 0 A 0 0
~ii,i ~il,2 —2Bqj 2Bq2 —2~o2 0 0 0 0 0 —A —2~I,~
~l2,l J~2,2 —2Bq2 —2Bq1 —2~o1 0 0 0 0 0 ~ —A
~ fl3,2 J13,3 J13,4 0 7~ X 0 0 J13,10 J13,11 J13,12

(3.6)

where J4,6 = = A~ + )~1Ifl~ J10,1 = Bv — F~~~(qi,q1) — FUUU(q2,q~), Jio,2
Fuav_Fuua(qi,qi)_Fuu~(q2,q2), J1i,i _Bwi_Fuuu(qi,qi)+F~~~(q2,q2), J112

Fuawi Fuua (qi, qi)+F~~~(q2, q~), J12,i = —Bw2 2Fuu~(qi, q~), Ji2,2 = —F~~w2 —

2Fuuc,(qi,q2), 7? = C(qi,qi,qi) + C(q1,q2,q2) — 2B(qi,v) + B(q1,w1) + B(q2,w2),
1= C(q2,q2,q2)+C(ql,ql,q2)_2B(q2,v)+B(q1,w2)_B(q2,w1), J13,l =zp~7?~+p~I,~,

= Pi7?a +P21a, J13,3 = P17?qi +P21q1, ~1l3,4 Pi??q2 +P2Iq2, ~13,lO Pi7?v +
P2’v, J13,i1 P17?w1 +P2Iw5, J13,l2 P1??w2 +P21w2.
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fA
1 —win
1 Tq0~

T
~ —q~2

A
Tq02
Tq01

338

Let Z (z~, z~’, Qf, Q~, ~, P~’, P~’, A1, A2, VT, WT, W~’)T be a singular vector
of the Jacobian of (3.5), Le.,

(3.7) JmaxZ0.

The first block row in (3.7) is eqitivalent to the condition that z = (z~, z~’)T is in
the tangent space to the equilibrium manifold. The second, third, sixth, and seventh
block rows together are equivalent to

~2 / Q \ 1 B(qi,zi)+Fuaqiz2

(3.8) Z’ 1 = t B(q2,zl)±F~0~q2z2

0 \~lJ 0

This system has full rank 2n+ 1 at the GH point with left singular vector (pf, p~’, 0,0).
It is solvable if and only if

(3.9) pf(B(ql,zl)+Fuaqlz2)+p~(B(q2,zl)+Fuaq2z2) 0,

or, equivalently, if and only if

(3.10) (‘Re~p, OA ~ =0.
\ \ 8(u,a) / /

This condition is linear in z. 1f it is satisfied, then Qi, Q2, ~ are uniquely defined by
(3.8).

Next, the fourth, fifth, eighth, and ninth block rows of (3.7) together form a
nonsingular square linear system in (P[, P~’, A1, A2) if z ~ T satisfies (3.10) and
Qi, Q2, Q satisfy (3.8). Similarly, the tenth block row uniquely defines V and the
eleventh and twelfth block rows uniquely define W1, W2.

The last row of (3.7) is equivalent to the condition

(3.11) z = 0.
O(u, a)

Let i~ denote the real part of the critical eigenvalue pak near the Hopf point. It is well
known from perturbation theory of matrices (e.g., [3]) that = Re~, 8(~,a) q).
Also, it follows from the theory of bialternate products (e.g., [12].) that in a neighbor
hood of the Gil point the function g in (2.7) has the form g(A) = h(A)rj(A) where
h(A) is a smooth function that is nonzero at the GH point. Therefore the two func
tions ~(A), £~ (A, B, C) together form a regular defining system ~or the GH manifold
which leads to the result. 0

4. Numerical examples.

4.1. A biochemical model. We consider a dynamic model, introduced by
Steinmetz and Larter [261 for the peroxidase-oxidase reaction. In [26] Hopf bifur
cations, torus bifurcations, and the onset of chaos are studied. We will show that
the model contains Gil points in the relevant parameter region, even with vanishing
second Lyapunov coefficient.

In the model the state variables are the concentrations A, B, X, Y of four reactants
and the dynamical system is

(Â -k1ABX - k3ABY + k7 - k_7A,

“41’ ~ È = —k1ABX-k3ABY+k8,
‘~ = k1ABX — 2k2X2 + 2k3ABY — k4X + k6,

1. ~ = -k3ABY + 2k2X2 - k5Y.

)

)

oai3~56;~9k1O

FIG. 4.1. The Steinmetz—Lartev model: Curves of equilibria, Hopf, and CH poznts.

The nine parameters k1, k2, k3, k4, k5, k6, k7, k8, k_7 have to be strictly positive and a
typical set of values is given by

(4 2 k1 = 0.1631021, k2 = 1250, k3 = 0.046875, k4 = 20, k5 = 1.104,
k6 = 0.001, k7 = 4.235322, k8 = 0.5, k_7 = 0.1175.

An unstable equilibrium is found for the state values A = 31.78997, B = 1.45468,
X 0.01524586, Y = 0.1776113.

In Figure 4.1 we present the projection of the equilibrium curve obtained by
continuation of the found equilibrium with free parameter k7 in the (k7, k8)-plane.
This short straight line (k8 is fixed!) ends at a Hopf point (denoted H) where stability
is gained. The coordinates of the Hopf point are (A, B, X, Y) = (34.8089,1.328518,
0.01524586,0.1776113) with parameter value k7 = 4.590045; one has w = 0.718649,

= 0.0221495. We then compute the Hopf curve through the Hopf point with free
parameters k7, k8 and find two Gil points (denoted Gil). The state coordinates of
one Gil point (the right one in Figure 4.1) are (50.40856, 0.9790055, 0.01342439,
0.1318399) with parameter values k7 = 6.336045, k8 = 0.4130391, and Hopf value w
0.770948. The state coordinates of the other Gil point (the left one in Figure 4.1) are
(3.009223, 14.18441,0.01797844,0.2602604) with parameter values k7 = 0.9994799,
k8 = 0.6458962, and Hopf value w = 0.540647. Starting from the first Gil point we
compute a curve of Gil points with free parameters k7, k8, k6. Not surprisingly, this
curve connects the two GH points (Figure 4.1).

In the above computations the derivatives up to order three were computed syrn
bolically. Both the minimally extended and the maximaily extended systems for Gil
were successful but the first one was much slower than the latter in the part of the
Gil curve at the left of the leftmost Gil point in Figure 4.1.

At present, CONTENT does not provide the computation of £2. We implemented
the formulae provided in [20] in a Maple script that allows us to compute £2, us
ing as input the coordinates of a Gil point and the critical ilopf eigenvalue. The
formulae in [20] use the left and right eigenvectors p, q of the Hopf eigenvalue. For
the first GH point we had q = (0.8922836 + 0.8767483i, 1.0259088 + 0.7407553i,
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4.61 4.65 4.69 4.73 • 4.77

FIo. 4.2. The Steinmetz—Larter model: A turning point of periodic orbits.

0.0106488—0.0175861i, 0.0195525—0.4189157j) and we obtained £2 = 0.03714948. For
the second GH point we had q = (—0.2963250 — 1.3343678i, —0.5863262 — 1.2699668i,
—0.0115737+0.0060498i, —0.2577585+0.3094303i) and we obtained £2 = —0.0642989.
Interestingly, the two values of £2 have opposite signs, which implies that the curve
of GH points in Figure 4.1 must contain a point where £2 = 0, a codimension-3
bifurcation point.

To find a turning point of periodic orbits we start from the Hopf point in Figure
4.1 and compute a curve of periodic orbits with free parameter k7. Since £~ > 0 in the
Hopf point, the initial periodic orbits are unstable. However, they gain stability by
passing through the turning point of periodic orbits that is clearly visible in Figure 4.2.
So for values of k7 near 4.65 the system contains a stable equilibrium inside an unstable
periodic orbit inside a stable periodic orbit as in Figure 2.1 (unfolding of a GH point
with £2 < 0) (the word “inside” refers to the center manifold). We note that we
started on that side of the second Gil point where £~ > 0 and where this phenomenon
could be expected.

4.2. The Hodgkin—Huxley model. The Hodgkin—iluxl~y equations model
the electrocheinical activity in the giant axon of a squid under experimental con
ditions. We refer to [14], [24] for background information. For comparison purposes
we compute the same Gil point as in [27]. However, we go further by computing £2

and by checking numerically that the global behavior (stability and turning points of
periodic orbits) of the dynamical system is indeed as predicted by the sign of £2.

The model has four state variables V, M, N, H and nine parameters C, 1, T, ~Na,

VNa, YK, VK, YL,VL. The system is given by

— I—G(V,M,N,H)
— c

M ~(T)((1 — M»M(V) — MI3M(V)),
pr ~(T)((1 — N)crN(V) — N/3N(V)),

I~f =

[ State Value ] Param Value
T V 16.16858 C 1
2 M 0.2764981 1 73.10221
3 N 0.5674828 T 28.8525
4 H 0.134613 gNa 120
5 VNa 115
6 g~ 36
7 VK -12
8 0.3
9 V1 10.559

T—6.3 x
~(T)=3T~, ‘~[‘(x)=

ex —1

All variables are dimensionless and M, N, H must lie in [0,1]. A path of equilibrium
solutions was computed with 1 as a free parameter, starting with an equilibrium point
with coordinates V = 3.79763, M 0.0819466, N = 0.377125, H 0.460421, C = 1,
1 = 6.09423, T 6.3, gNa 120, VNa 115, g~ = 36, VK —12, ~ = 0.3,
V~ 10.559.

On this path two Hopf points were detected. The first Hopf point has normal
form coefficients w = 0.586234 and £~ = 0.0295828. Starting from this point we
computed a Hopf curve with free parameters 1, T. This curve connects the two Hopf
points and contains a Gil point. The state and parameter data of the latter point
are given in Table 4.1. The normal form coefficients were found to be w = 4.78029
and £2 = —0.9753110208. The latter one was computed using a MAPLE script as in
section 4.1. We note that only the sign of £2 matters and the exact value depends on
the normalization of q. For the sake of completeness we note that the components of q
were —3.199519768 +7.412552050i, —0.4109376890+0.1746207445i, 0.03404794090+
0.04655670361i, —0.03648128516 — 0.04903171265i.

In section 2 we discussed the implications of the fact that £2 < 0 for the global
behavior of the dynarnical system for nearby parameter values. We now describe
some computations to confirm these predictions. We first consider (fairly arbitrarily)
a point P1 on the Hopf curve prior to the Gil point with V = 11.1758, M = 0.177261,
N = 0.493693, H = 0.232554, 1 = 33.6114, T = 25. We have not yet passed the
Gil point, 80 £~ is stil positive and a hard loss of stability must occur at this Hopf
point. The unstable orbit can be started from a Hopf bifurcation point. In Figure 4.3
we show the result of such an experiment done in CONTENT. We start from P1 and
compute the curve of periodic orbits with free parameter T. Figure 4.3 shows traces of
points on the orbits for increasing values of T. The parabola-like form of the projected
manifold of periodic orbits near the ilopf point is clearly visible as well as a turning
point of the curve of orbits for T = 28.299.

4.

372

36.4

35.6

.4

1..

TABLE 4.1
Coordinates of a generalized Hopf point in the Hodgkin—Huxley equations.

—t k7

where the following functions are used:

G(V, M, N, H) = YNaM3H(V — VNa) + ~KN4(V — VK) + gL(V - VL),

~M(V) =

aH(V) = 0.07e~~’120,
!3N(V) = 0.125e~”80,

clN(V) = 0.11Ii(~~),

13M(V) 4e_~”/1S,

/3H(V) (1 + e(30_V)/10)_1,

(4.3)
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FIG. 4.4. Hopf and GH cttrues in the LP-neuron model.

TABLE 4.2
State variables and parameters in the model of the LP-neuron and their starting values.

State Value Pararn Value Param Value

T v 37.23287 Cm 0.0017 ENa 50.0
2 h 0.09175608 kh 500.0 E~a 140.0
3 Ca 0.1718782 k~a 360.0 EK 86.0
4 ac~ 0.02303237 kK(Ca) 45.0 Eh 10.0
5 ac~ 0.0002113384 kAf 30.0 E1 50.0
6 baai 0.1685567 kA8 10.0 Iewt 1.011661
7 fl 0.3274853 kr 0.1 Vr -110.0
8 aK(ca) 0.001795105 ~Na 2300.0 Sr 12.0
9 bi<(c~ 0.7773247 ~Cai 0.21 CiCa 300.0
10 ~ 0.5891483 gCa2 0.047 VA 43.0
11 0.01586177 0.841 Vkr 100.0
12 bA3 0.01586177 gK(Ca) 5.0 5kr -13.0
13 ah 0.002319856 gAf 3.655097 gj . 0.1
14 gAs 1.3 Vb 62

—~—— Yh 0.1

4.3. The LP-neuron. The lateral pyloric (LP) neuron is on~ of a group of nerve
ceils in the stomatogastric ganglion of the crab, Cancer Borealis. Golowasch and
Marder [4] and Buchholtz et al. [1] proposed dynamical systems models for the elec
trochemical activity of this neuron. We use a model developed at Corneli University
by J. Guckenheimer and others in collaboration with the department of neurobiology.
This model contains 13 state variables and 29 parameters. A full description can be
found in [5] but is also available from the authors as an input file for CONTENT.

Our computations start at a double Hopf point, i.e., a point with two distinct
pairs of pure imaginary eigerivalues. The state and parameter values are given in
Table 4.2.

Starting from this point, we compute a Hopf curve which forms a closed loop
during which the two pure imaginary eigenvalue pairs swap their places. The free

parameters are ‘ext and ~Af. This closed loop is shown in Figure 4.4 as the triangular
shaped closed curve that contains three GH points. We then compute the curves of
GH points through each of the three found points by freeing gK(ca) as the third free
parameter. One of these curves connects the first two Gil points. The computations
were done using the maximally extended system in section 3.2. The minimally ex
tended system failed to work in this case; the steplength was forced to unacceptably
low values.

5. Further considerations. In this section we deal with issues of practical
interest for the reader who is interested in comparing various methods and in further
developments.

(1) The software package CONTENT [19] is freely available. The minimally and
maximally extended systems for GH points are both implemented. Computa
tion of £2 will be inciuded in the next release of CONTENT. In the meantime,
a Maple script for computing £2 is available from the authors.

(2) Our experience suggests that the most robust method for continuing GH
points is the maximally extended system (3.5) where all derivatives of F
are computed symbolically. This was confirmed by further computations in
another chemical model, the Bykov—Yablonlcsi—Kim model [2]. The reader is
encouraged to test the hypothesis in other examples.

(3) The method proposed in [27] for the continuation of Gil points is based on the
idea of adding a scalar equation equivalent to £~ = 0 to the defining system
for Hopf points. Therefore it seems to be related to our minimally extended
system. However, we have no effective performance comparisons.

(4) CONTENT provides three methods for computing Hopf points, namely, the
standard method, the bordered square method, and the bordered biproduct
method. In the standard method the square k of the Hopf eigenvalue and
a vector in the two-dimensional eigenspace of F~ + kI~ are used as additional
unknowns in an extended defining system with a total number of 2n + 2
unknowns. In the bordered square method the singularity of F~ + kI is ex-

Fia. 4.3. A turning point of periodiC orbits in the Hodgkin—Huxley model.
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pressed by a bordering method; this leads to a system with a total number of
n + 2 unknowns. The bordered biproduct method is essentially the minimally
extended system for GH (3.2) where the condition £~ = 0 is omitted. The
defining system has n + 1 unknowns only; however, It uses the bialternate
matrix product with dimension ~n(n — 1) in intermediate computations. For
more details see [6]. The computation of the Hopf curve in the LP-neuron
model in section 4.3 is a good test case to compare the three methods. First,
we note that only the bordered biproduct method recognizes the closed loop
of Hopf points in the state-parameter space as such. Indeed, the other meth
ods effectively work in a larger space where the curve is not closed. Second,
for the bordered biproduct method the Hopf-neutral saddle points on the
Hopf curve (there are several) really form bifurcation points. Therefore, the
continuation method sometimes computes the “wrong” branch if the stepsize
is allowed to grow too large.
It is not trivial to compare the speed of the three nfiethods because the corn
putations are done in different spaces and use different parameters. So the
initial choices for the steplength and upper bounds for the steplength have
totally different meanings. However, in the LP-neuron model we found a
curve which could be computed by the three methods, and none reached its
maximal steplength. The standard method took 24.1 seconds, the bordered
square method took 7.5 seconds, the bordered biproduct method took 36.4
seconds. This coufirmed our general feeling that the bordered square method
is faster than the two other methods in cases where n is not very small. This
is understandable from the growth of the problem sizes. For lower dirnensions
(like in the Steinmetz—Larter and Hodgkin—Huxley models where n = 4) the
comparison is more ambiguous.

(5) In the minimaily extended system (3.2) the first two equations can in principle
be replaced by any defining system for Ilopf points. In view of the above
conclusion on the computation of Hopf points, the bordered square method is
a good candidate. However, since the maximally extended system apparently
outperforms the minimally extended system, this does not seem to be an
urgent implementation task.

(6) In the present implementation in CONTENT the Jacobian matrix Jmax(3.6)

of the maximally extended defining system for GH (35) is augmented by
a bordering row to form an (8n + 6) x (Sn + 6) matrix and solved as a
dense systern. Since it contains many zero blocks, it is reasonable to solve
it by a block elimination method to exploit the sparsity. This will not affect
the accuracy of the solution signfficantly if we avoid solving systems with
ill-conditioned blocks. The structure of (3.6) suggests a strategy that we
now describe briefly. First, the first, second, third, sixth, and seventh block
rows of (3.6) and the five leading block columns of (3.6) together form a
(3n +2) x (3n + 2) matrix which is actually the Jacobian matrix of a defining
system for simple Hopf. The efficient solution of linear systems with this

system was studied in [9]. 1f such a solution method is implemented, one
can exploit it to zero all the elements in the five leading block columns of
(3.6) which are not in the block rows of the Hopf system. Therefore we are
left with the solution of a (5n +4) x (5n + 4) system. However, this system
decouples because the eleventh and twelfth block rows of (3.6) now contain

only nonzero elements in the eleventh and twelfth columns, there forming a
2n x 2n matrix

(-A
k~ 2wI~

which is typically nonsingular (if it is singular, then 2wi is also an eigenvalue

of A, so the point is a double Hopf point as well). Therefore this system can
be solved separately and we are finally left with a (3n + 4) x (3n + 4) systern.
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