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We discuss the computational study of curves of Hopf and double-Hopf points in the software
package CONTENT developed at CWI, Amsterdam. These are important points in the
numerical study of dynamical systems characterized by the occurrence of one or two conjugate
pairs of pure imaginary eigenvalues in the spectrum of the Jacobian matrix. The bialternate
product of matrices is extensively used in three codes for the numerical continuation of curves
of Hopf points and in one for the continuation of curves of double-Hopf points. In the
double-Hopf and two of the single-Hopf cases this is combined with a bordered matrix method.
We use this software to find special points on a Hopf curve in a model of chemical oscillations
and by computing a Hopf and a double-Hopf curve in a realistic model of a neuron.
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1. INTRODUCTION

Consider a dynamical system depending on parameters,

u=Fu, o), u, Flu) e R", a € R", (1)
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Implementation of Hopf and Double-Hopf Continuation . 419
whose equilibria satisfy the nonlinear system of equations

F(u, o) = 0. (2)

Typically, the behavior of solutions of (1) depends qualitatively on the
parameters. CONTENT [Kuznetsov et al. 1997] is an interactive software
environment for the computational study of dynamical systems. CONTENT
1.4 is freely available via anonymous login on ftp.cwi.nl in the directory
/pub/CONTENT (it is strongly advised to read the README file in this
directory before attempting to install CONTENT). Currently, there are ver-
sions of CONTENT for SGI Irix 5.x/6.x, Sun OS 5.x, DEC OSF1 3.2, IBM
R6000 AIX 4, and HP-UX 7000, as well as for PC Linux Red Hat 4.x (Motif
2.0 should be installed) and PC MS-WINDOWS 95/NT (Borland C++ 5.0 is
required).

CONTENT allows the simulation of orbits of (1) by numerical integration,
the continuation of solutions to (2), and the computation of special solutions
to (1) such as periodic orbits. It automatically detects bifurcations and
computes normal form coefficients at found points. CONTENT further allows
to continue equilibrium bifurcations in ODEs and detect further degenera-
cies. It also supports continuation of equilibria and cycles in iterated maps,
and continuation of the solutions to certain boundary-value problems on
the unit interval [Kuznetsov et al. 1996].

A basic element of CONTENT is a predictor-corrector continuation code to
compute implicitly defined curves like branches of solutions to (2) if a
parameter is freed. The code allows to detect, locate, and pathfollow
numerically several types of bifurcation points, basically by adding other
equations to the system (2), freeing an appropriate number of parameters,
and using the same continuation code. The resulting extended system of
equations is called the defining system and is automatically generated in
CONTENT.

An important feature of CONTENT is its ability to employ first, second, and
third derivatives of the right-hand side of (1). In fact, the user can choose
one of three ways to compute the derivatives: symbolic (automatic genera-
tion using C++ [Levitin 1995]), numerical (finite differences), and by a
user-provided routine. We will routinely use first and second derivatives,
occasionally also third derivatives of F'.

In the present article we discuss the implementation into CONTENT of two
algorithms for the numerical continuation of Hopf curves and one for the
continuation of double-Hopf curves. We recall that a Hopf point is a
solution point to (2) where the Jacobian matrix F', has a pair of eigenvalues
*iwg, we > 0. It is a double-Hopf point if there are two such pairs. The
presence of Hopf points or double-Hopf points has profound implications for
the dynamic behavior of (1) for nearby parameter values; e.g., see
Kuznetsov [1995]. In particular, periodic orbits appear generically near
single-Hopf points, while homoclinic, quasiperiodic, and chaotic motions
exist near double-Hopf points.
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420 ° W. Govaerts et al.

For the bordered matrix methods the main mathematical result is the
following.

ProroSITION 1. Let
A B
M "( c’ D )

be a nonsingular (n + m) X (n + m) block matrix with A € R**", B, C €
R™®*™ D € R™*™. Let the inverse

[P g
Ml“(RTS)

be decomposed similarly. Let p =< min(n, m). Then A has rank deficiency p
if and only if S has rank deficiency p.

For a proof we refer to Govaerts and Pryce [1989]. In the case where
m << n and p small we will typically use this result to express that A has
a desired rank deficiency.

The essential tool in the present approach to Hopf points is the bialter-
nate matrix product or biproduct. If A is an n X n matrix (typically A =
F,) and I,, denotes the n X n identity matrix then the biproduct 2 A © I,
1s an m X m matrix with m = n(n — 1)/2. Its rows and columns are both
induced by pairs (i, j) with i > j, and the biproduct is formally defined by

(

—Qy if & =j
a; ifk+iandl =
' )l a;jta; ifk=iandl=j
(2AOL) 65w = a, ifk=iandl#j’
—aj ifl =1
L 0 otherwise

The pairs (i, j) and (%, [) are ordered lexicographically. For example, if A
is a general 3 X 3 matrix then

a;t+ Qo Q23 —Q3
2A ®I3= Q39 (111+a33 aqo
—Q3; Qo Qg T Q33

For our purposes the main results about biproducts are as follows:

ProOPOSITION 2. If A has eigenvalues Ay, ..., A,, then 2A © I, has
eigenvalues (A; + Aj)1<jc;=n- If A can be written as A; + A\; withj < iina
unique way, then X is an algebraically and geometrically simple eigenvalue
of 2A O I,,.
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Implementation of Hopf and Double-Hopf Continuation . 421

COROLLARY 1. 2A O I, is singular if and only if A has a zero-sum pair of
eigenvalues.

In particular, 2A © I, is singular at a Hopf point. But it is also singular
if there are two real eigenvalues with sum zero. This is called a neutral-
saddle case. Also, there is an intermediate case where A has two zero
eigenvalues. This is called a BT (Bogdanov-Takens) point; it is another
important case in the dynamical study of (1).

From a mathematical point of view, the matrices with exactly one pair of
zero-sum eigenvalues form a codimension 1 manifold in the space of all
matrices, defined by (for example) the condition that the determinant of the
biproduct matrix is zero. The algorithms in CONTENT actually compute
curves with zero-sum pairs of eigenvalues; the distinction between Hopf,
BT, and neutral saddle is essentially an afterthought. Points with two
zero-sum pairs of eigenvalues are not in this manifold but on its boundary.
We have the following result.

PROPOSITION 3. If A has exactly two different zero-sum pairs of eigenval-
ues then 0 is an eigenvalue of 2A © I, with algebraic and geometric
multiplicity 2. In particular, 2A O I, has rank deficiency 2.

A double-Hopf point is a special case of this; the algorithm in CONTENT
computes points with two zero-sum pairs of eigenvalues, and the specializa-
tion (double-Hopf, Hopf-neutral saddle, etc.) is done afterward.

Proposition 2 and Corollary 1 are classic. A proof of Proposition 3 is given
in Govaerts et al. [1997].

We note that the bialternate product was introduced in 1900 by Stépha-
nos [1990] and recently revived as a computational tool in Guckenheimer et
al. [1997] and Kuznetsov [1995].

2. CONTINUATION OF SINGLE-HOPF CURVES

2.1 Standard Method for Hopf Curve

In the standard implementation, a Hopf curve is defined as a one-dimen-
sional manifold ' in R2**3 endowed with coordinates (u, v, k, a) where «,
v € R*, k € R, a € R? have to satisfy

Flu, a)=0

(F*(u, @) + l)v =20
(w,0)=1=0 )

(L, v)=0.

This defining system was introduced in Holodniok and Kubiéek [1984] and
Roose and Hlavaéek [1985]. We note that actually the computed points are
Hopf points only if « > 0; for k = 0 we have BT-points, and for x < 0 we
have neutral saddles. ,

In (3) L is a constant vector whose choice is in principle arbitrary; it is
only required that L is not orthogonal to the null-eigenspace of the matrix
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F2 + «I,. The last condition in (3) is necessary to make the choice of v
locally unique.

The following test functions are computed along the standard Hopf curve
to detect and process Hopf singularities:

r

1 - -
djl = -2-—(:)— Re[<p9 C(q’ q, Q)> - 2<p> B(qa A—IB(Q7 C.I))
0
+(p, B(q, 2iwol, — A)"'B(q, ¢)))],
'1(]2: K,
s = det(A),
\ Yy = det(ZApnc O, )

Here A = F (u, «); the complex vectors p, ¢ € C” satisfy
Ag=iwg, ATp=-iop, (¢, ¢)=(p,q) =1,
(Reg, Im q) =0, (4)

where (p, q) = pTq is the standard scalar product in C” (also used in R"),
and the multilinear functions B(q, p) and C(p, q, r) are defined by

t0F (u, )
Big,p) = 3 2 q;Pk (5)
. ()ujduk
Sk (10, ap)
and
E)BFi(u7a0)
Cip, g, r)= 2 —————|  Diq , (6)
k=1 U;IURIUy (w0, o)
fori = 1, 2, ..., n. The test function ¢, is only defined when the critical

eigenvalues are imaginary, i.e., k = w2 > 0. In this case, one can use v to
compute g. Namely, the vector ¢ = g + iq; € C" with

1

gr="v, q1=— —— Av
wo”U”

is obviously a critical eigenvector of A corresponding to iw,. An extra
normalization makes it satisfying (4). In the literature ¢, is known as the
first Lyapunov coefficient; its sign distinguishes sub- and supercritical
Hopf bifurcations. The above formula for ¢ is derived using the center
manifold reduction in Kuznetsov [1995, Sect. 5.4].

In the definition of ¢, N© C R" is the orthogonal complement of the
two-dimensional singular space of AT that corresponds to the critical
eigenvalues. This is an invariant subspace of A; the eigenvalues of A|yc are
the eigenvalues of A other than the critical ones.
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The following singularities can be detected and located as regular zeros
of the above-defined test functions:

—Generalized Hopf: ¢y = 0;
—Bogdanov-Takens: ¢, = 3 = 0;
—Zero-Hopf: ¢35 = 0, Y, ¥ 0;
—Double Hopf: ¢, = 0.

Again, these singularities strongly influence the dynamic behavior of (1).
We note that Generalized Hopf is the bifurcation where the first Lyapunov
coefficient vanishes; this is sometimes called a degenerate Hopf or Bautin
bifurcation. We refer to Kuznetsov [1995] for details.

2.2 Bordered Squared Jacobian Method for Hopf Curve

Here the Hopf curve is defined as a one-dimensional manifold in R® 3
endowed with coordinates (u, , @) where u € R*, k € R, « € R? have to
satisfy

Flu, ) =0
8 =0 (7)
8y =0

where g;; = g;; (u, a) are components of the matrix G obtained by solving
a nonsingular system with two right-hand sides

- < v 0]
cT |0 0 (G):(I). (8)
cT 1o o 2

This system is based on the ideas in Chu et al. [1994] and Werner [1996];
B,, B,, C,, C, are vectors in R”. By Proposition 1, G has rank defect 2 in
a Hopf point which translates to four conditions:

gu=0,g12=0,g21=0,g22=0

Two of these are chosen as defining equations. The test functions are the
same as in the standard Hopf curve, and the same singularities can be
detected.

2.3 Bordered Biproduct Method for Hopf Curve

The bordered biproduct Hopf curve is specified by the following defining
functions,

{ Flu,a)=0
81822 — 812821 =0,
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where g,; = g,; (u, o) (i, j = 1, 2) are the components of the matrix
G = ( g1 812 )
821 822

2F,0L, |W, W,
Vi {du dis (

obtained from solving

v\ (o
o) -(7) g

where V,, Vo, W,, Wy € R™, dyq, d1o, dgy, dos €E R, m = n(n — 1)/2 are
constant quantities chosen so that the matrix in (9) is nonsingular.

The equation g,1822 — §12821 = 0 means that G has rank defect one. By
Proposition 1 then 2 F, © I, also has rank defect one, which is the
condition for a zero-sum pair of eigenvalues by Corollary 1.

If the derivatives G, (z one of the state variables or parameters) are to be
computed symbolically, then we also solve

Vi |da da

2F,0I,|W, W,
(WT G) V? du d12 1=(0 I,), (10)
Vg dy1 dgo

where W € R™>2, Then indeed

G.=-WIQ2F,oI,V.

Along the biproduct Hopf curve, the following test functions are computed:

(
1 . )
Y1 =— Rel[(p, C(q, q, q)) — 2{p, B(q, A"'B(q, q))

- 2(1)0

+(p, B(q, (2iwe, — A)'B(q, q)))],
B (v, Av){(w, Aw) — (w, Av){v, Aw)

2 (v, vV (w, w) — (v, w)? ’
1113: det(A)y
\ Yy = Zao

Here A = F, (u, a); two real vectors v, w € R"” are such that @ = v A w
where A denotes the wedge product and @ is a right singular vector of 24 ©
I,,. We recall that the wedge product v A w of two vectors in R” is a vector
in R**~12 jndexed by pairs (i, j) where 1 < j < i = n such that (v A
w) ;) = v;w; — vw;. In the present case, v, w span the two-dimensional
eigenspace that corresponds to the zero-sum pair of eigenvalues. This is an
invariant subspace of A, and by some easy computations one verifies that
Yo(= k) is the product of the two zero-sum eigenvalues.

ACM Transactions on Mathematical Software, Vol. 24, No. 4, December 1998.




Implementation of Hopf and Double-Hopf Continuation . 425

The complex vectors p, ¢ € C” satisfy (4), and the multilinear functions
B(p, q) and C(p, g, r) are defined by (5) and (6). The test function ¢, is
identical to the first test function evaluated along the standard Hopf curve.
It is only defined when the critical eigenvalues are imaginary, 1.e., ¢ =
w2 > 0. In this case, one can use v to compute g. Namely, the vector ¢ =
qg + ig; € C* with

v 1

qr= 7> 491 T
o] wolv]l

is a critical eigenvector of A corresponding to iw,. An extra normalization
makes it satisfying (4).

The same singularities as in Section 2.1 can be detected and located as
regular zeros of the above-defined test functions:

—Generalized Hopf: y; = 0;
—Bogdanov-Takens: ¢, = y3 = 0;
—Zero-Hopf: ¢35 = 0, Y # 0;
—Double-Hopf: ¢, = 0.

2.4 Bifurcation, Continuation, and Auxiliary Data

The computation of single-Hopf curves generically requires two free param-
eters. The continuation code in CONTENT can be used to continue Hopf
curves defined by the three systems: the Standard Hopf (I) system, the
Squared Jacobian Hopf (II) system, and the Bordered Biproduct Hopf (III)
system. Conceptually we distinguish between bifurcation, continuation,
and auxiliary data. The bifurcation data are the same for all Hopf curves.
These are

(u’ a7 K’ v’ L)

where u contains the state variables, « the parameters,  is the product of
the zero-sum eigenvalues, and v is a nonzero vector in the eigenspace of the
zero-sum eigenvalues. Finally, L is a vector not orthogonal to this eigen-
space; in practice it is an approximation to a vector in the eigenspace
orthogonal to v. The continuation data are the unknowns in the set of
defining equations and thus depend on the computational method. In
addition, each method may have its own auxiliary data, i.e., quantities that
are fixed in the defining equations for one or more continuation steps
(prediction and correction) but may still have to be adapted.
For type (I) the continuation data are

(u7 a’ K’ v)’

and L is an auxiliary vector.
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L3

For type (II) the continuation data are

(u’ a) K),

while By, B,, C;, C, are auxiliary vectors and (i+, j;), (io, jo) are auxiliary
integer numbers.
For type (III), the continuation data are simply

(u, a),

but this method has more auxiliary data, namely V,, V,, W,;, W, € R™
and D € R**? where
dy; d
D — ( 11 12 )

d21 d22

Each type has a Starter routine where the continuation and auxiliary data
are generated that are needed in the Hopf defining condition or test
functions. Also, the tangent vector to the curve at the starting point is
computed. This information is then passed to the continuation code (Con-
tinuer).

The Continuer computes successive points on the Hopf curve and evalu-
ates a number of test functions. If it detects a sign change of a test
function, it locates its zero within given accuracy using bisections. In such
a way, higher degeneracies or bifurcations on the Hopf curve are computed.

After a fixed number of steps (chosen by the user but typically one)
during continuation, the auxiliary data are refreshed. This is done by the
Adapter routine. ;

2.5 Implementation of the Standard Hopf Method

In the Starter the initial values of u, «, v, L are read from the stored data.
In the Adapter the vector L is adapted as a vector in the singular space of
F? + «I, and orthogonal to V = v; the aim is to avoid that L ever becomes
orthogonal to the singular space, since this would make the defining system
for standard Hopf singular.

2.6 Implementation of the Squared Jacobian Hopf Method

In the Starter the initial values of u, @, k are read from the stored data,
and the auxiliary data B,, B,, C,, C,, (i4, j1), (i, jo) are generated. The
auxiliary data are updated in the Adapter. The process of generating and
updating the auxiliary data is basically the same as in the double-Hopf
case; indeed, in both cases we express that a matrix has rank defect two.
We refer to Sections 4.2 and 4.3 for details.

2.7 Implementation of the Bordered Biproduct Hopf Method

2.7.1 Starter. The initial values of u, o are read from the stored data.
Then we distinguish between two cases. If m = 2, i.e.,, n = 3, then the
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bordering vectors V;, V, € R™ are initially chosen as follows:
V,=(0,...,0,1,07 V,=(0,...,0, 17,

while the bordering columns W,, W, € R™ are chosen as vectors of the
type

(0,0,...,0,1,0,...,0,07,

where the position of the 1 is determined by the row indices of the two rows
with minimal pivot elements in the LU-decomposition with complete pivot-
ing of the matrix 2 F, © I,. Initially, d;; = 0, i, j = 1, 2. This choice
guarantees that the bordered matrix

2F,0I, ! w, W,
VA di dip (11)
Vi |da da

is nonsingular if 2 F, © I, has rank defect at most two (at least for
practical purposes, assuming that the ill conditioning of 2F, © I, trans-
lates into the appearance of small pivot elements). To improve the condi-
tion of (11) before continuation is started, V,, V,, W, W, and d,,, dys,
ds;, dgo are once adapted, as is described in the next section.

In the case m = 1, i.e., n = 2, we put

and

Indeed, the matrix

QF,0I, 1 0
1 00
0 01

is always nonsingular.

2.7.2 Adapter. During continuation, the borders are adapted to make
(11) as well conditioned as possible. This is done in the following way. We
want V; to be a right singular vector of 2 F,, © I,,, and assume that (11) is
still nonsingular in the actual point. So we solve

2F,0L, |W, W, o
Vi dy dyy |(EQ D) = (I ) (12)
Vg d21 d22 2
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Let (a B) denote the row in

(0) (0)
1,m+2 2,m+2

( E0me1 Ebmer )
containing the largest of the four entries (in absolute value). The new
values for V, are then the first m components of a normalized version of &V

with

1) 0 0
&)= —pEP + agl).

By this construction V, is a right singular vector of 2 F, ® I,,.

The adaptation of W, is done similarly with the matrix (11) in (12)
replaced by its transpose. So W, is adapted to become a normalized left
singular vector of 2 F, © I,,. We set d;; = dy, = 0. Now consider

_(2F,0I,|W,
M1~< 7T To ) (13)

This matrix is nonsingular if 2 F', © I, has rank defect 1, i.e., in every
single-Hopf point. We will border it choosing V,, Wo, ds;, d;o in such a
way that (11) is as well conditioned as possible in this case. Since the
condition for nonsingularity of (11) is

W
(Vg d21)M1—1< 2) # 0, (14)
d12
we first solve
) = a) |
i) = o 4o

and then normalize

v
[

to provide the new V,, d,,. Then we solve

w25 (2
and normalize
[2)
af

to provide the new W,, dq,.
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We note two things. First, if the computed point is actually close to a
double-Hopf point, i.e., to a point where 2 F, © I, has rank defect two,

tends to the right singular vector of M, i.e., V, tends to a right singular
vector of 2 F, ® I, orthogonal to V,, and do; tends to zero. Similarly, W,
tends to a left singular vector of 2 F, © I,, orthogonal to W, and d;, tends
to zero. Hence (11) will remain nonsingular even at double-Hopf points, and
our defining system for Hopf points is still defined (though it becomes
singular because a double-Hopf point is generically an intersection of two
curves of single-Hopf points). This is the main reason for using a bordering
with two additional rows and columns instead of one.

Second, since M, has full rank in single-Hopf, points it follows from
Propositions 1 and 2 that g5, # 0. Hence we will use g, as a test function
for the detection of double-Hopf or other points with two zero-sum pairs of
eigenvalues. We note that by Propositions 1 and 3 all components of G
must vanish if F,, has two zero-sum pairs of eigenvalues.

3. EXAMPLES

3.1 LP Neuron Model

As a first example model we used the LP (Lateral Pyloric) neuron model of
the stomatogastric ganglion of the crab Cancer Borealis, described in
Govaerts et al. [1997]. We do not repeat the (very complicated) complete
description here. It is given in the easily accessible paper [Govaerts et al.
1997] and typing it in from paper would be an error-prone task anyway; a
code can be obtained from the authors if desired. We just recall that the
model has 13 state variables, and we consider three free parameters (the
model contains a large number of other parameters which will be fixed in
our implementation). We started from a Hopf point with coordinates given
in Table I and continued using the bordered biproduct method (the Hopf
point itself was found by path-following a curve of equilibria, starting from
a point with values suggested by experiments and measurements).

A projection of the resulting Hopf curve on the (I,,,, §4/)—space is shown
in Figure 1 which was drawn by CONTENT. The parameters I, and g, were
freed and g (., Was held fixed.

On this curve, we detected one zero-Hopf point (denoted as ZH) and one
double-Hopf and four Hopf-neutral saddle points (both indicated with DH).
The critical eigenvalue at the zero-Hopf point is 40.28604585i. The two
pairs of complex eigenvalues causing the double-Hopf point are =40.32075:
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Table I. A Hopf Point in the LP-Neuron Model

state value param value
1 v —37.375628 1. 0.962394
2 h 0.09414726 Ear 3.3467726
3 Ca 0.17133200 Ex(ca) 5
4 Qe 0.02257790
5 Cca, 0.00020707
6 bca, 0.17107233
7 n 0.32563857
8 Ax(Ca) 0.00174379
9 bxica 0.7778751
10 ayu 0.58698691
11 bar 0.01623749
12 bas 0.01623749
13 a, 0.00234855
6.5 oA

6.1+

DH

ST

53r

49+

455

41F

37k

33

29+

I : ! ! ; ! L i L et

25
09 095 1 L5 L LS 12 125 13 135 14

Fig. 1. A double-Hopf point on a Hopf curve.

and =0.063568:. In Figure 1 the double-Hopf point is the one very close to
the zero-Hopf point (but distinct from it: see Figure 3 for a zoom-in).

3.2 A Chemical Model
The second example is a chemical model given by the following equations:
X = 2¢,2° — 2q5x° — qgxy

Y =Q92 — Qgy — qsxy
§ =qe — kq,s,
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Table II. A Hopf Point in a Chemical Model

state value param value
1 x 0.07792759 q; 2.5
2 y 0.2330654 gs 1.040992
3 s 0.4921479 gs 10
4 Q4 0.0675
5 qs 1
6 Qs 0.1
7 k 0.4

where z = 1 — x — y — s (see Bykov et al. [1978] and Khibnik et al.
[1987]). This system is used as an example in Khibnik et al. [1993].
Starting from the point with coordinates given in Table II, we obtained a
(closed) Hopf curve.

The notation GH indicates a generalized Hopf (or Bautin) point, and BT
is an abbreviation denoting a Bogdanov-Takens point. Note that the part of
the Hopf curve to the right from the BT points corresponds to neutral
saddles.

4. CONTINUATION OF DOUBLE-HOPF CURVES

The computation of double-Hopf curves generically requires three free
parameters, say a = (a;, ay, @3). In this section, we describe the implemen-
tation in CONTENT of this computation using a doubly bordered biproduct
matrix.

4.1 Defining System

The Jacobian matrix F, has two pairs of purely imaginary eigenvalues at a
double-Hopf point, so by Proposition 3 the biproduct matrix 2 F, ©® I, has
rank defect two. We border it with two additional rows and columns to
make it nonsingular.

The double-Hopf curve will be specified by the following defining func-
tions:

Flu, a)=20
in = 0 (17)
gi2j2= 0

with g,; = g;/(u, @) components of the matrix G obtained by solving

2F,QL, W, W,

vl 1o 0 <g>=(10> (18)
VZ 0 0 2
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Fig. 2. A Hopf curve in a chemical model.

By Proposition 3, G has rank defect two in a double-Hopf point, which
translates to four conditions:

Eu1=0, g12=0, g£=0, go=0

Two of these are chosen as defining functions. So the continuation data are
u, o with V,, Vo, W,, W, and (iy, j,), (i, jo) as auxiliary data (the
analogue of the 2 X 2 matrix D in Section 2 is a zero matrix).

We note again that (17) actually defines points with two zero-sum pairs
of eigenvalues; distinction between double-Hopf, Hopf-neutral saddle, etc.,
is done in the postprocessing.

Symbolic derivatives of &i,j,» 8i,, if desired, can be computed as in
Section 2.2. '

4.2 Starter

The initial values for u, « are read from the stored data. The initial choice
of V,, V,, W, Wy, is obtained from pivot information as in Section 2.5.1 in
the case m = 2 (the case m = 1 is impossible, since we need at least four
state variables). To decide the choice of (i, j;), (is, jo) We first perform an
LU-decomposition with complete pivoting of

FI 0 0 0
FI 0 0 0
FL 0 0 0
FL 0 0 0
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Let py, po, P3 be the rows in which the three smallest pivots appear, and
set F, = [F,, F,]. Now solve

F,

el )

32‘2 (Vl Vg V3) = (13> . (19)
eT

D3

Here e, is the (p;)th unit vector; by construction the matrix in the
left-hand side of (19) is generically well conditioned (we assume that F', has
full rank n), and

V= (V1 Vz V3)

is a base for the three-dimensional singular space of F,.

Now we compute the derivatives (g;;), with z either a state variable or a
parameter. In this way, we obtain four vectors G,,,, Gis,, Go1,, and Gy,
in R”*3 that contain these derivatives. The tangent vector to the double-
Hopf curve is necessarily in the space spanned by V and orthogonal to all
vectors G,;,. We project the four of them orthogonally onto the span of V
and obtain

= VaVE VP VE Gy,
= VuVE V) P VE G,
G21 ViVE V) L VE Gay
Gh = VN(VE V) L Vi Gy,

(20)

So in the absence of roundoff and truncation errors the four vectors in
(20) span only a two-dimensional space. We choose two index pairs so that
the corresponding vectors span this space in a numerically optimal way.
First we compute |G% ], IG*2l, IG%1l, and ||G%,|; the largest norm gives
the first index pair (i,, j,). After that, G¥ , 1s normalized.

To find the second index pair (i,, jo), we prOJect G’; onto the orthogonal
complement ofG j, for all (i, j) # (iy, j1), e,

G** G;‘; <GL], l1]1>G11/1 Wlth (1'9 .]) # (ib .]1)

Again norms are calculated, and the index with largest norm gives (i5, jo).
To improve the performance, the Adapter is called before starting the
continuation.

4.3 Adapter

The adaptation of V,, V,, W,, W, is easier than in Section 2.5.2. Indeed,
the vectors £, £ now span the two-dimensional right singular space of 2
F,O1I,. Sowe orthogonahze and normalize them to form the new V,, V.
Adaptation of W,, W, is done similarly. This procedure is optimal in the
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Table III. A Double-Hopf Point in the LP-Neuron Model

state value param value
1 v —37.23289 1. 1.011663
2 h 0.09175642 8ar 3.655107
3 Ca 0.1718781 Ex(ca) 5
4 Qcq, 0.0230323
5 Qca, 0.0002113377
6 bea, 0.168557
7 n 0.3274851
8 Arcas 0.001795097
9 brca) 0.7773248
10 au 0.589148
11 bar 0.01586182
12 b, 0.01586182
13 a, 0.002319861

sense that the big square matrix in (18) has minimal condition number if
the original problem was “reasonably” scaled, i.e., so that 1 is in or near the
interval that contains the m — 2 largest singular values of 2 F, ® I,. The
choice for (iy, j;) and (i,, j,) is adapted in the same way as in the Starter,
except that for the calculation of V,, the three bottom rows of the matrix
(19) are replaced by (g, ; )., (g;,;,). and the tangent vector to the curve.

5. EXAMPLE: LP NEURON MODEL

On the Hopf curve of Figure 1, a double-Hopf point was detected with
coordinates given in Table III.

We use this point to start continuation of a double-Hopf curve, indicated
as a dashed line in Figure 3. In fact, Figure 3 is a zoom-in on Figure 1 near
the zero-Hopf (ZH) point. It shows also that the double-Hopf and zero-Hopf
points in Figure 1 do not intersect itself at the double-Hopf point.

6. COMPARISON WITH OTHER SOFTWARE

LOCBIF2 [Khibnik et al. 1993] and AUTO97 [Doedel et al. 1997] are
probably the best-known codes that allow to compute curves of Hopf
bifurcation points.

The algorithm in AUTO97 (and its many predecessors since about 1980)
1s close to our Standard Hopf method but uses the imaginary part of the
Hopf eigenvalue as an unknown of the problem. More precisely, the
defining system used in AUTO for the continuation of the Hopf bifurcation
is given by the following 3n + 2 equations in R®***% endowed with
coordinates (u, v, w, w, a):

"

Flu, a)=0

F,(u, a)v + ow =0
Fu, c)w — wv =0, (21)

(v, vg) + (W, wgy —1=0

\ (v, wo) — (v, w) =0
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Fig. 3. Zoom-in of Figure 1.

where g, = vy + iw, is the critical eigenvector at the previous computed
point in the curve. It is assumed that w > 0. Therefore, AUTO does not
compute curves of points with zero-sum eigenvalues but only Hopf curves.
Thus, using (21), AUTO could not pass a Bogdanov-Takens point where
o = 0 and detect it regularly.

The algorithm in LOCBIF2 computes curves of points with zero-sum
eigenvalues using the defining system

{ Flu, a)=0 99)

An_l(u, a) = O,

where A, _; is the Hurwitz determinant of order n — 1 associated to the
characteristic polynomial of F,(uz, a). Thus, it is conceptually closer to our
Bordered Biproduct Hopf method. It has the advantage that it does not use
the biproduct matrix. Our experience with Example 1 shows that problems
with n = 13, m = n(n — 1)/2 = 78 can still be handled efficiently with
the Bordered Biproduct Hopf method, but for larger values of n the method
slows down considerably. On the other hand, the method in LOCBIF2
computes and differentiates numerically the coefficients of the characteris-
tic polynomial of the Jacobian matrix, and this makes it less robust because
of scaling problems.

For the double-Hopf case our method is to the best of our knowledge the
first implemented code. LOCBIF2 allows to detect double-Hopf points as
self-crossing points of the defining equations (22) but cannot path-follow
. double-Hopf points (see Khibnik et al. [1993, p. 50, p. 64] for more
| information). No other standard package considers double-Hopf points.
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