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Rank-deficient Matrices as a Computational Tool

W. Govaerts*and B. Sijnave

Department of Applied Mathematics and Computer Science, University of Gent, Krijgslaan
281 - 89, B900O Gent, Belgium

Rank-deficient matrices arise naturaily in many applications. Detecting rank changes and computing param-
eter values for which a matrix has a prescribed (low) rank deficiency is a fundamental task in computing
least squares and minimum norm solutions to systems of linear equations.

We describe an approach that originates from numerical continuation and bifurcation theory but has a
wider applicability. It uses only linear solves with a bordered extension of the rank-deficient matrix and the
transpose of that extension. We discuss the basic methods and their application in fundamental problems
such as minimization and in more advanced problems in non-linear analysis. We present extensive numerical
evidence in instructive test cases as well as in a chemical model (one-dimensional PDE) and a biological
model (using the software package CONTENT for dynamical systems). © 1997 by John Wiley & Sons, Ltd.
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1. Introduction

In many applications we deal with parameter-dependent matrices A(x) ,a € R , where
« is a set of k parameters. Singularity (in the case of square matrices) or rank deficiency
of such matrices is not necessarily a nuisance. In minimization problems it is precisely
what we expect to find. In applications like continuation and bifurcation most interesting
phenomena appear when certain matrices are singular or even have a higher rank deficiency.
Computation of such matrices (i.e., computation of the parameter values « for which A(x)
exhibits the prescribed rank deficiency) is therefore part of the problem.

We recall that manifolds of matrices with prescribed Jordan forms (rank deficiency is
part of this setting) were studied extensively in [14] and [4]. However, the results obtained
there are far from numerical applicability.
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Defining functions, based on bordered extensions of the matrix, were proposed in [7]
for a limited (but important) class of rank deficiencies and Jordan forms; the origin of this
method is in numerical continuation and bifurcation theory, see [8,9,2]; a survey is given in
[3]. We will apply and discuss these ideas in practical numerical examples, including their
introduction into software. The basic idea is to use only solutions with linear systems of the

form
A(@) B A@ B\
(€@ 5) = (& 5)
where B, C, D are bordering matrices.

In Section 2 we discuss the general method to detect rank deficiencies and to compute
the parameter values associated with a certain rank defect. This is illustrated in Section 3
by a set of numerical tests in the case of an artificial but instructive example.

In Section 4 we show how to solve the linear minimum norm least squares problem
using a small number of solutions with a fixed bordered extension of the given matrix
and its transpose; we compare the method with the standard LAPACK routines. Numerical
comparisons are given in Section 5.

In Section 6 we discuss a more advanced application : detection of a singularity of high
codimension in a non-linear problem. This singularity is characterized by the rank defect
of the Jacobian matrix of the set of equations that defines the problem.

Tn Section 7 we discuss another application : detection and numerical continuation of a
path of solutions to a non-linear problem where the Jacobian matrix has a conjugate pair of
complex eigenvalues with real part zero.

2. Computation of the matrix rank : the basic idea.

In the space of n; X n matrices we consider the matrices A with rank r (r < min (1, n2)),
i.e., with rank defect k = min (n1, n2) — 1. It is known (and proved again in [7]) that they
form a manifold with dimension nyny — (ny —r)(n2—r) =r(ny +n3)—r?. Mathematically,
this means that locally they look like a subspace of R (m1-+n)—r? , though the global structure
of the manifold may be quite complicated. Perhaps more importantly, the manifold is locally
defined by (n; —r) X (nz —r) scalar conditions which together form a system of equations
with full linear rank.

Unfortunately, there are usually no global systems that characterize such manifolds, but in
[7] local systems were obtained, using bordered matrices. The method requires a bordering
of A with m additional rows and m2 additional columns to obtain an extension of the form

A B
u=(& )
with B in R"*™2_C in R"2*™ and D in R™ ™2, The extension has to be square, hence
ny +myp = ny + my. It has to be non-singular also, i.e. my > n2 —r, Or, equivalently,

ma>ny—r.
Matrices V € R"2Xm1 and G € R™2*™! are then defined by the system

\%
M( G ) = Il:n1+m1.n1+1:n1+m1 (21)
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Rank-deficient Matrices as a Computational Tool 445

where the right-hand side of (2.1) contains the m rightmost columns of the #; +m identity
matrix. The basic result proved in [7], Proposition 3.2, is that A and G have the same rank
defect, i.e., the rank r1 of G is given by r; = m3 —ny +r = m; — np + r. I in particular,
mjy, my are chosen minimally, i.e. m) = ny —r,my = n; —r,thenr; = 0 and so G
is the zero matrix. In fact, the equations G = 0 then form (locally) a regular system of
(n1 —r) x (ny — r) defining equations for the manifold of matrices with rank r.

For numerical purposes it is important to note that the derivatives of G can be derived
fairly easily from the derivatives of A. Indeed if we define the matrix W e R*1*™2 by

solving
( WT G )M = In2+l:n2+m2,l:n2+m2 (2.2)

then we have G, = —WTA,V for any variable z on which A depends (cf [7]; this idea goes
back to [8] and [9]).

The choice of B, C, D does not (in principle) matter provided that M is non-singular.
This is generically the case if the dimensions satisfy the given requirements. The word
‘generically’ can be given a precise mathematical meaning in the space of all matrices but
this is not very relevant for numerical purposes. In practice, it means that we can pick any
random numbers to fill up the bordering vectors, though this is not necessarily the best way
to choose B, C, D. Since the choice is rather problem dependent, we will discuss it in the

applications.
To get the basic idea right, we first consider the case of a square matrix A(x) (n] =n; =
n), with rank defect 1 where & € R is a vector of parameters. We construct a one-bordered

extension of this matrix and solve the system

Al@ b v\ _ (0
T d gl )]\ 1

where b, ¢ and d are chosen such that the bordered matrix

( Ac(?‘) Z ) @2.3)

is non-singular. Then it follows that A(«) is singular if and only if
g@) =0 2.4

holds. Also, under an appropriate transversality condition (2.4) has « as a regular solution,
i.e., the Jacobian matrix of (2.4) has full rank at the solution point. Then the solution value
of @ can be detected by monitoring sign changes of g(«).

If the square matrix A(a) has rank defect at most 2, we construct a non-singular two-
bordered extension and again solve the system

A(l@) B Ve Y _[ 0
cT b G /]  \ b
where I, denotes the 2 x 2 identity matrix. Now A () is singular iff G(«) is singular which

means that
det (G(x)) =0 2.5
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Also, A(a) has rank defect 2 iff
G)=0 (2.6)

As before, these phenomena can generically be detected by monitoring sign changes and
the critical parameters can be computed from the equations (2.5) and (2.6) respectively.
The choice of the borders so far has been undecided. If no a priori information is available,
then we may just use randomly generated vectors which are reasonably scaled. We will do
this in the examples in Sections 3 and 5. If approximations to the left and right singular spaces
are available, then we can do better. First consider the case of rank defect 1. Proposition
2.2 in [7] shows that an optimal choice in the sense of a minimal spectral condition number
of 23)is b = ¥, ¢ = ¢,d = 0 where ¥ (respectively, ¢) is a left (respectively, right)
singular vector of A scaled so that [|¢| and ||| lie between the first and (n — 1) singular
values of A. So if approximations ¥ to 1 and ¢ to ¢ are available, then the choices

b=v%, c=¢ and d=0
are appropriate. Similarly, in the case of a matrix with rank defect 2, one should choose
B=V¥, C=¢® and D=0

where W denotes an approximation to a scaled orthogonal base of the left singular space of
the matrix and & an approximation to a scaled orthogonal base of the right singular space.
The scaling should ideally be so that the norms of the columns of B and C are between the
first and (n — 2)® singular values of A.

3. Example 1: numerical detection of rank defect

As a first example, we construct an artificial problem for illustrating our method in the cases
of a singular matrix and a matrix with rank defect 2. Consider the matrix

Mo
Ay =ML . A O . Mg 3.1
0 A

witha = (A1, Ap) € [R? and zeros in the blank spaces. In this construction, My, and My are
products of five (different) Householder matrices of dimension n and My is a Householder
matrix of dimension n — 2. We recall that a Householder matrix of dimension » has the

form

where I, denotes the identity matrix of dimension » and u € R". The components of all
the Householder vectors were generated uniformly random in [-0.5, 0.5].
From (3.1), it is clear that if one of the two parameters in ¢ is zero then the matrix A(a)
is singular. It is also obvious that A(e) has rank defect 2 for the choice (A1, A2) = (0, 0).
We first solve the system

Al@) b vi@) \ _( 0
(cT d)(g(a))'(l) G2
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Table 1

A A2 flvli2 g

0.000 0.002 197.5266 -7.7936D-14
0.000 0.001 197.5266 -1.3082D-13
0.000 0.000 2049146 8.2212D-14
0.000 -0.001 197.5266 3.6757D-13
0.000 -0.002 197.5266 -4.7704D-13

where n = 100, m = 1 and with borders chosen uniformly random in [-0.5, 0.5] and
scaled so that max; ;(|a;, ;1) = max;(max(|b;], |c;], |d])) .

The following table of results (Table 1) was cbtained by computations in Fortran double
precision on a SUN workstation; the linear systems were solved using the LAPACK routines
DGETRF and DGETRS (which amounts to Gaussian elimination with partial pivoting).

We see indeed that g(a) ~ 0 if A(«) is singular, which is the case since A = 0. It is
perhaps more surprising that ||v|j; does not tend to infinity if A, tends to zero. The reason
is that the system (3.2) is generically solvable even if A; = A, = 0. Suppose ¢; and ¢, are
two linearly independent zero-vectors of A(a), then

( Bo1 + vy )
0

is a solution to (3.2) if

BcTo)) +y(cTen) =1

Since ¢ was chosen randomly, it is unlikely that ¢ will be orthogonal to both ¢ and ¢5,
so the equation generically has a solution in 8, y. It is known from standard treatments
of Gaussian elimination with partial pivoting (e.g., [5], Chapter 4) that in such cases the
computed solution to (3.2) has only a moderate growth.

On the other hand, if we solve the system

Al@) b v(a) e

(% 2) ()= () )
with an RHS that is generated uniformly random in [—0.5, 0.5], then we expect that the
size of v will grow tou™!|[ (e f )T I 1M~ ()|, where M is the matrix used in (3.3)

and u denotes the machine precision. Experimentally we obtain the results in Table 2.
Though we do not recommend using singular bordered extensions of A(x) in any sys-
tematic way, their accidental appearance is unavoidable in some computations and should
be monitored. In a case like in Table 2 it can be detected fairly easily by the growth of the
computed solution to (3.3); the normal conclusion is that one should switch to a bordered

extension with more rows and columns.
When solving the system with two additional rows and columns to border A(@), i.e.,

A(@) B V@) \_( 0
cT D G ) \ b
one expects that |G| = 0 if A(e) is singular and that G = 0 if A(«) has rank defect 2, i.e.,

if (A1, A2) = (0, 0). This is confirmed by Table 3 where g11, g12, g21 and g22 denote the
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Table 2

M A2 llvil2 g

0.000 2.0D-03 14472.2990  75.6895
0.000 1.0D-03  14287.6101  75.6895
0.000 1.0D-04 11864.2915  75.6895
0.000 1.0D-05 535374841  75.6895
0.000 1.0D-06 605017.1447 75.6895
0.000 0.0D+00 2.1734D+16  39.2714
0.000 -1.0D-03 15050.3637  75.6895
0.000 -2.0D-03 14853.8306  75.6895

Table 3

Ay Az g11 812 g21 822 |G|

00 0002 -4.58D-03 3.37D-03 -134D-02 9.91D-03 1.15D-19
00 0001 -243D-03 179D-03 -7.15D-03 527D-03 4.62D-18
0.0 0.0 777D-16 5.42D-16 7.40D-16 853D-16 2.62D-31
00 -0.001 279D-03 -2.05D-03 8.19D-03 -6.04D-03 -5.92D-18
00 -0.002 6.01D-03 -443D-03 1.76D-02 -1.30D-02 -1.33D-17

elements of G. The bordering matrices B, C, D were again generated uniformly random
in [—0.5, 0.5] and scaled so that the maximal absolute value of the entries of A is also the

maximal absolute value of the entries of the union of B,C, D.

4. Minimum-norm least-squares solutions

Suppose that A € R"'*" and a vector b € R™ are given. We want to compute the
minimum-norm least squares solution to the problem

Ax=h @.1)

with x € R"2.

We first perform some preprocessing work on A (not involving b). Suppose that A has
rank 7 < min (n1, n2) and rank defectk = min (n1, ny) —r. These are not known in advance
(they are part of the computation) but we assume that k is small (say, k = 1,2, 3,...) and
that we can border A with m additional rows and m3 additional columns so that its bordered

extension B
A
( o D ) “2)

is non-singular. This requires nj + my = nz +m2 andny; —my=n; —mp <r,soonlya
lower bound for r is required. We note that B € R"1>™2, C € R"*™, D € Rm1xm2_ Now
compute V € R™*™1 and G € R™2*™! by solving

A B v
( CT D ) ( G > = Il:n;+m1,111+1:nl.+.m1 (4.3)
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Then G has rank r; = ma —nr1+r = my —n2+r and rank defect k = min(mi, my) —ry =
min(zn;, n;) — r. Since G is a small dense matrix we can compute r; easily by standard
methods, e.g., by a complete orthogonal factorization

Try (T 0°
QGZ—(O 0) 4.4)

where Q, Z are orthogonal and T is a non-singular upper triangular r; X ri matrix (this can
be done in LAPACK by a QR decomposition with column pivoting followed by another
QR decomposition, cf. LAPACK routines SGELSX or DGELSX). We now construct an
orthogonal base of R™!

{517 s ,$r11§r1+1’ . -1$m1}

such that G&;, G &, ..., G§&, span the range of G and G§,+1 = ... = G, = 0.
If (4.4) was performed, then the columns of Z form precisely such a base. Now define
£V = [g,...,& ] and P = [£,41, ..., &m,] . By multiplying (4.3) with £ on the
right, one finds that V £ has full rank m; — r{ = nz — r. From (4.3) we also find that
AVE®D =0, meaning that V £@ spans the right singular space of A. Next we compute

W e R"1*™2 by solving

A B
( WT G )( CT D ) = In2+1:n2+m2,1:n2+m2 (4-5)

and construct an orthogonal base

{7’17 ey nl‘lv 7Ir1+17 DR TIM2}

for R™2 suchthat GT 7y, ..., GT ,, spantherange of GT and GT 1y 41 = ... = G 1y, =
0. If (4.4) was performed, then the columns of Q form precisely such a base.

Put 7O =[5y, ..., 7 ]and 7@ = [1,,41, ..., im,] . In the same way as before we find
that W n@ has full rank m, — r| and spans the left singular space of A, i.e., the orthogonal
complement of R(A) .

From (4.3) it follows that AV £ + BG£W = 0. So B (G&WD) is in the range of A
and we know that the r; columns of G £ are linearly independent. But B(R™) must also
contain a n1 — r dimensional space complementary to the range of A since the matrix (4.2)
was chosen to be non-singular. Since r{ + (n] —7) =my —ny+r+ny—r =my, it
follows that if s € R™2 is any vector for which B s € R(A) holds, then necessarily s is in
the span of G&W, i.e., there exists at € R such thats = G£D ¢,

Now consider again (4.1). We first project b onto the range of A, i.e. we consider

bi=b-Wnp¥¢ (4.6)
where ¢ € R™™"1 is chosen so that b — W 1P ¢ € R(A), or, equivalently, so that

Wa@T W n@ye = Wn@)Tp @.7)

(&2)(7)=(%) “

from which it follows that B g € R(A). So there exists at € R such thatg = G§M ¢,

Now we solve

© 1997 by John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., Vol. 4, 443458 (1997)
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We find ¢ by solving
GENTGEDyr = (GEM)Tg 4.9)

Now we have A p + BG Dt = by and since B G = —A V (cf. (4.3)), we can also write
A(p —VEWD ) = by If we put

xi=p-VED; (4.10)

then x; is a least squares solution of (4.1). To find a2 minimum-norm least squares solution

we put
x=x1+(VE®D)2A 4.1D

and solve
(VENTWED A= —(VEDT x; (4.12)

tofind A .

The main computational work in this algorithm consists of m solves with the matrix
(4.2) in (4.3), m3 solves with its transpose in (4.5) and one more direct solve for every right-
hand side vector in (4.8). The other computations are in the factorization (4.4) and in (4.6),
4.7), (4.9), (4.10), (4.11) and (4.12). If A is a large dense and nearly square matrix, say
n1 = ny =~ n and m, my are small compared with n then the bulk of the work is in the direct
factorization of the matrix (4.2) and the number of flops (addition plus multiplication and
some index computations) has order %n3 ([5], Chapter 4.2). The computational work for an
orthogonal factorization of A has order %n3 , i.e. double the previous amount ([5], Chapter
6.2). So the present method actually requires less computational work than the standard
algorithm. Of course the accuracy of the method will depend strongly on the condition of
the matrix in (4.2). So we feel that it can be recommended mainly in cases where a complete
orthogonal factorization is not possible but linear systems can be solved (e.g., in the case
of large sparse matrices).

5. Example 2: a minimum-norm least-squares solution

As anillustration of the method described in the previous section, we consider the calculation
of the minimum-norm least-squares solution to Ax = b, where A = A(w) is defined in
(3.1) and b is generated randomly in R". So n; = n2 = n, m; = my; = m. We used
n = 50, m = 2 in our tests. The entries of the bordering matrices B, C, D were generated
uniformly random in [—0.5, 0.5] and scaled as in Section 2. For the parameters we chose
a = (0.002, 0.0), i.e. the matrix A has rank defectk =1 .

By solving the bordered system

(&5)(6)=(%)

G = —0.0046035 0.00812417
— \ 0.00275985 —0.00487055

one gets

and |G| = 1.62292 x 10718, so the 2 x 2 matrix G is singular, as expected. The vectors
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£1, €2, N1, 77 can easily be found directly and we obtain
_ (04929952 , _ ( 0.8700320
=1 08700320 ) 2=\ 04929952

_( 0.8576771 _( —0.5141887
M=\ _05141887 )" =\ —0.8576771

Further we find
(Wa)T (b= (Wnat)) = —3.469447 x 10~18 (5.1)
Wn)Tb—Wmne) = 6227227
From (5.1) it is clear that (b — (W2 £)) € R(A) .

We also compared our method with the result by means of the LAPACK routine DGELSX.
The Euclidean norm of the LAPACK solution xy, is :

lxrll2 = 1458.1355415651

For the solution by bordered matrices xp we got

lxg — x|l = 2.61396049 x 10710

so that the relative difference is
lxg — xzll/llxz |l = 1.79209598 x 10~13

which illustrates the accuracy of the solution by bordered matrix methods.

6. Example 3: singunlarities in a non-linear problem

As a more advanced application we consider the Brusselator (cf. [13]) where we have a
reaction—diffusion equation governed by

% = %%2—((34-1)}( X2Y — A(Aq, L, D4, 7))
(6.1)
ar %%12’ (X2Y — BX)

with z € [0, 1], ¢ € [0, 4+oo[, L is the length of the one-dimensional reactor, Dy the
diffusion coefficient of X, Dy the diffusion coefficient of ¥ and

Ag Apexp(P)
A(Ag, L, Dy, 20) = ——mm— P _— —P
(40, L. Da.2) = o mopy PP + oy PP
with P = 75—:

We impose the Dirichlet boundary conditions X(0) = X(1) = Ap, Y(0) = Y (1) =
B/ Ap. The equilibrium equations are now discretized by a mesh of 42 equidistant internal

© 1997 by John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., Vol. 4, 443-458 (1997)
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Table 4

Uipairi=0,...,10 woi4i,i=0,...,10 w344;,i=0,...,9 wug4q;,i=0,...,9
4.4185838410825 1.7166251083831 4.2918010162073 1.7678240768052
4.1635037412020 1.8191140088368 4.0334866676875 1.8704237908616
3.9019060321546 1.9216053060640 3.7692536952841 1.9724388384093
3.6363193117997 2.0226412639883 3.5041414041340 2.0718768282817
3.3739496256918 2.1197699918002 3.2471017096471 2.1659195737336
3.1250193208394 2.2099132724050 3.0091271501162 2.2513416156210
2.9007991077070 2.2898104945305 2.8013144898589 2.3249516397705
2.7118256992968 2.3564306696349 2.6333377206709 2.3839526300582
2.5666982996089 2.4072652111517 2.5125968082830 2.4261600313354
2.4715691891117 2.4404725090697 2.4440061677227 2.4500808897998
2.4301620782259 2.4549049694102

points of [0, 1], resulting in 84 state variables u(i),i = 1,..., 84 with

u(i) = concentration of X for i odd
T | concentration of Y for i even

The discretization uses a Numerov method, i.e. in the grid point z; the values of the
non-linear functions f(Xj, ¥}, z;) that appear in (6.1) are replaced by

1
E(f(Xj-—l, Yi_1,zj-1) + 10 (X}, ¥}, zj) + f(Xj41, Yjt1, Zj41))

to obtain a higher order of accuracy.
In this way we get a non-linear system

F(u,Dx,Dy, Ao, L,D4y,B)=0 (6.2)
that describes the equilibrium solutions of the reaction equation for the six parameters Dy,
Dy, Ag, L, Dy4, B.

The solution set of (6.2) is an extremely complicated geometric object that requires
advanced analytical methods even to just describe its local structure. We will discover a
point where the Jacobian matrix F, has rank defect 2. In general, i.e. in a problem with
no symimetry, this is a codimension four case and requires four free parameters. In practice
it is not possible to find such points directly; one computes singular points of increasing
codimension by freeing successively more parameters. For singularities with a distinguished
bifurcation parameter we refer to [6]. However, in a problem with Z;-symmetry (such as
the Brusselator) a Jacobian with rank defect 2 is a codimension two phenomenon.

For the present purposes only the last stage is important. Thereby we start from a point

with parameter values

(Dx, Dy, Ag, L, D4, B) = (0.0016, 0.008, 4.5444340712, 0.1353905795,
0.0209709146, 7.5687934072)

This point is in the symmetric solution space of (6.2),1.e., uga—2i+1 = u2i—1 and ugs—2;42 =

ug; fori =1,...,21. So it is sufficient to give u;, j = 1, ..., 21, see Table 4.
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cusp winged cusp

Figure 1

We computed a branch of cusp points in (u, L)-space through this point. For a precise
definition of cusp points we refer to the literature, e.g., [6]. Loosely speaking, a cusp point
is a solution point to (6.2) where the solution set (with fixed Dy, Dy, Ag, D4, B) locally
looks like that of x> — A% = 0 in R2. In Figure 1 a cusp point in (A, x)-space is shown.

Computationally one expresses two requirements. First, the solution set to (6.2) has a
singular point, i.e., the Jacobian [F,, F; ] does not have full rank. We recall that the matrices
with rank 83 form a manifold with codimension (84 — 83) x (85 — 83) = 2 in the space
of the matrices with dimension 84 x 85, so two scalar conditions are needed. Second, the
two solution curves through the point must have a common tangent (otherwise, we have
generically a simple bifurcation point instead of a cusp). This condition involves second-
order derivatives of F.

Our starting point was found to be a cusp in previous computations. In fact it is a winged
cusp in (L, u)-space, i.e., the common tangent is orthogonal to the L axis, cf. [6]. Figure 1
also shows a winged cusp in a two - dimensional (A, x)-space.

With Dy, Dy fixed and Ag, L, D4, B free, we compute by numerical continuation a
curve of cusp points in (#, L)-space. In all points of this curve the Jacobian F), is singular.
It turns out that on the curve there is a point where the Jacobian has rank defect 2. The
effective continuation of the curve was performed using a doubly bordered Jacobian matrix;
an attempt by using single borders failed because of the presence of the rank defect 2 point.

In the sequel we describe side computations that were done in every computed point
without influencing the continuation itself.

By solving the system
F,|b vy _ (0O
ct|d g/ \1

with b, ¢ and d fixed scaled random vectors and F, the Jacobian along the curve, we get
the values shown in Table 5 in four points of the curve.

In this table, the first row contains the values at the starting point of our curve. The second
row represents the values in the continuation point just before the critical point (rank defect
2). The third row gives the situation just after the critical point and the last row contains the
values some points behind the critical point.

© 1997 by John Wiley & Sons, Lid. Numer. Linear Algebra Appl., Vol. 4, 443—458 (1997)
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Table 5
fivil2 8
0.508148242 -6.385896D-18
0.576804133 1.579223D-10
0.576934851  1.708340D-09
0.573945687 6.521427D-11
Table 6
g1 g12 821 g2 |G|
-3.2176D-02  2.4127D-02 3.4067D-02 -2.5546D-02 -1.0842D-19
-2.0394D-05 1.5299D-05 2.1340D-05 -1.6009D-05 -3.6705D-15
3.0905D-05 -2.3189D-05 -3.2338D-05 2.4266D-05 6.0176D-14
3.6961D-05 -2.7781D-05 -3.8665D-05  2.9062D-05 2.7455D-15

The starting point was obtained by an attempt to locate the winged cusp point accurately;
this explains why |g| is very small indeed at that point.

We see that indeed g = 0 all along the curve as we suspected. If we border F,, with two
additional rows and columns (again with fixed scaled random entries) and solve

(&) (8)-(5)

with F, the Jacobian along the curve, we now find (for the same points as in Table 5) the
values in Table 6.

In this table we see that at the critical point all components of G change sign indicating
a matrix with rank defect 2.

It is easier to detect a sign change than to decide whether or not something is (approxi-
mately) zero. To compare with a more standard approach we computed the singular values
o;(i = 1,...,84) of the Jacobian along the curve to see whether the evolution of the sin-
gular values gives sufficient indication of the rank change. The greatest singular value (o)
and the least three singular values (032, 033 and og4) for the points in Table 5 are shown in
Table 7. The underiined value in the third row is small which is an indication of a matrix
~ with rank defect 2. Of course, one could argue that there is not really that great a difference

between this value and the corresponding values in the other rows, as the order of magnitude
is concerned. This is understandable because gg3 attains a minimum in a point with rank

defect 2 but does not change sign.

Table 7. Singular values of the Jacobian F,

g1 og2 0383 084
4.0085 1.6980D-02 1.5737D-03 1.3542D-16
4.0173 1.3237D-02 2.5265D-06 4.6110D-10
40173 1.3227D-02 9.2097D-07 9.9833D-10
42676 1.6967D-02 2.8932D-05 3.5534D-13

Numer. Linear Algebra Appl., Vol. 4, 443-458 (1997)
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Table 8. Singular values of one-bordered extension of F,
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gy 033 J84 a3s
6.0497 2.0228D-02 1.4421D-02 1.5705D-03
6.0548 2.1483D-02 1.2946D-02 2.5166D-06
6.0548 2.1498D-02 1.2935D-02 9.1737D-07
6.1023 2.4734D-02 1.5803D-02 2.8766D-05

Table 9. Singular values of two-bordered extension of F,

o1 o84 ogs Jg6
7.9220 1.6685D-02 1.2167D-02 1.6160D-03
7.9286 1.2208D-02 9.1958D-03 2.3174D-03
7.9286 1.2200D-02 9.1867D-03 2.3205D-03
7.9888 1.7830D-02 4.7102D-03 2.1894D-03
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If we compute the singular values of the one-bordered extension of the Jacobian we get
(again with the points from Table 5) the values in Table 8.

Indeed, at the critical point the smallest singular value apparently goes through a mini-
mum, with the same remark as before concerning the sensitivity of the SVD to rank changes.
To be complete, the singular values of the two-bordered extension of the Jacobian are pre-
sented in Table 9.

In Table 9 none of the singular values is particularly small near the critical point. This
suggests that the Jacobian F, has rank defect at most two at the critical point.

7. Example 4: detection and computation of Hopf points

A Hopf point of a dynamical system is an equilibrium solution where the Jacobian ma-
trix has a conjugate pair of complex eigenvalues with real part zero. A Bogdanov-Takens
point is a point where it has a zero eigenvalue with algebraic multiplicity two and geo-
metric multiplicity one. These cases have important dynamic implications [11] and can be
computed using bordered matrices. We illustrate the basic idea using the software package
CONTENT developed at CWI (Amsterdam) by Kuznetsov and Levitin [12]. This has the
advantage of making the method, in principle, applicable to any system. The model is the
following eutrophication model introduced in [1] and numerically studied in [15] :

x1 = x1(0.2(A01 — x3 —x3) — 0.445x3 — 4)
X3 = —0.0455x3x3 + 4x;
X3 = A(10 — x3) — 2.67x3(0.445x1 + 0.0455x,)

We detect and numerically path-follow the same Hopf point by two techniques. We first
use the default method of CONTENT (present state of development !) and then discuss our
implementation using a bordered matrix.

We start from the point

(x1, X2, X3, A1, A2) = (0.2359621, 4.53947, 4.56968, 34.94297, 0.7)

© 1997 by John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., Vol. 4, 443-458 (1997)
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which happens to be a limit point with respect to A;. We continue the curve of equilibria
with fixed Ay = 0.7 to find a Hopf point H with

(x1, x2, x3, A1, A2) = (0.1708848, 2.621508, 5.730609, 35.543, 0.7)

Then we free A, and use H as an initial point for the computation of a curve of Hopf
points. On this curve we find a Bogdanov—Takens point BT with

(x1, x2, x3, A1, A2) = (0.31177, 4.016539, 6.823618, 39.51084, 1.843967)

A projection on the (A1, x1)-space, produced by CONTENT, is given in Figure 2. We will
now discuss an implementation that uses bordered biproduct matrices.
The biproduct matrix 2A © I, is constructed as

[ —an k=]
ik ifk#iand/=j
aij+aj; k=i andl=j
aj ifk=iand[# j
—ajx ifl=i
0 else

QA © L, j), ) = |

where A = (g;,;) is a square matrix of dimension . In this construction { > j and k > I,

so the biproduct matrix 2A © I, has dimension n(nz—- D « n(nz— D See [10] for details.
The main property is that the eigenvalues of 2A © I, are the sums of pairs of eigenvalues of
A (cf. [10]). In particular, 2A © I is singular iff A has two eigenvalues with sum zero. The
method originally implemented in CONTENT uses the determinant of the biproduct matrix
as an indicator of Hopf points. A possible disadvantage of this choice is that there is no
simple way to compute derivatives of the determinant function, except by finite differences.

Numer. Linear Algebra Appl., Vol. 4, 443-458 (1997) © 1997 by John Wiley & Sons, Ltd
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Instead of this, we solve the system

2401, | b v _ (0
(F# ) (5)-(7)
where A is the Jacobian matrix F, of the system and with b and ¢ random vectors. We then
use the resulting g as detection function for Hopf points as well as defining function for their
continuation. We declared g as a user-defined function (a facility provided in CONTENT)
and got Figure 3.

Figure 3 was also drawn by CONTENT. We note that on a curve of Hopf points a BT-point
can also be interpreted as a limit point since the Jacobian matrix is singular in a BT point.

This explains the difference in notation between Figure 2 and Figure 3.
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